Approximations of effective coefficients in stochastic homogenization

نویسندگان

  • Alain Bourgeat
  • Andrey Piatnitski
چکیده

This note deals with localized approximations of homogenized coefficients of second order divergence form elliptic operators with random statistically homogeneous coefficients, by means of “periodization” and other “cut-off” procedures. For instance in the case of periodic approximation, we consider a cubic sample [0, ρ]d of the random medium, extend it periodically in R d and use the effective coefficients of the obtained periodic operators as an approximation of the effective coefficients of the original random operator. It is shown that this approximation converges a.s., as ρ →∞, and gives back the effective coefficients of the original random operator. Moreover, under additional mixing conditions on the coefficients, the rate of convergence can be estimated by some negative power of ρ which only depends on the dimension, the ellipticity constant and the rate of decay of the mixing coefficients. Similar results are established for approximations in terms of appropriate Dirichlet and Neumann problems localized in a cubic sample [0, ρ]d .  2004 Elsevier SAS. All rights reserved. Résumé Nous étudions différentes procédures de périodisation ou troncature pour approcher les coefficients effectifs d’un opérateur elliptique du second ordre à coefficients aléatoires stationnaires. Considérons par exemple la restriction d’un environnement aléatoire à un cube [0, ρ]d et son prolongement périodique à Rd tout entier. Nous montrons qu’alors, pour presque toute réalisation de l’environnement aléatoire, les coefficients homogénéisés dans l’approximation périodique convergent quand ρ → ∞ vers les coefficients effectifs de l’opérateur initial. Sous des hypothèses de mélange nous prouvons des bornes sur la vitesse de convergence de la forme ρ−α où α > 0 ne dépend que de la dimension, la constante d’ellipticité et du taux de mélange. Nous obtenons aussi des résultats similaires pour des approximations basées sur des problèmes de Neumann ou de Dirichlet, localisées dans un cube [0, ρ]d .  2004 Elsevier SAS. All rights reserved. MSC: 35K20; 35Q35; 35R60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Measure and Approximation of Homogenized Coefficients

Abstract. This article deals with the numerical approximation of effective coefficients in stochastic homogenization of discrete linear elliptic equations. The originality of this work is the use of a well-known abstract spectral representation formula to design and analyze effective and computable approximations of the homogenized coefficients. In particular, we show that information on the ed...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Periodic approximations of the ergodic constants in the stochastic homogenization of nonlinear second-order (degenerate) equations

We prove that the effective nonlinearities (ergodic constants) obtained in the stochastic homogenization of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear uniformly elliptic pde are approximated by the analogous quantities of appropriate “periodizations” of the equations. We also obtain an error estimate, when there is a rate of convergence for the stochastic homogenization.

متن کامل

Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems

In this work, we are concerned with the convergence of the multiscale finite element method (MsFEM) for elliptic homogenization problems, where we do not assume a certain periodic or stochastic structure, but an averaging assumption which in particular covers periodic and ergodic stochastic coefficients. We also give a result on the convergence in the case of an arbitrary coupling between grid ...

متن کامل

Stochastic Homogenization of Reflected Stochastic Differential Equations

We investigate a functional limit theorem (homogenization) for Reflected Stochastic Differential Equations on a half-plane with stationary coefficients when it is necessary to analyze both the effective Brownian motion and the effective local time. We prove that the limiting process is a reflected non-standard Brownian motion. Beyond the result, this problem is known as a prototype of non-trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004